The membrane shell model in nonlinear elasticity: A variational asymptotic derivation

نویسندگان

  • Hervé LE DRET
  • Annie RAOULT
چکیده

We consider a shell-like three-dimensional nonlinearly hyperelastic body and we let its thickness go to zero. We show, under appropriate hypotheses on the applied loads, that the deformations that minimize the total energy weakly converge in a Sobolev space toward deformations that minimize a nonlinear shell membrane energy. The nonlinear shell membrane energy is obtained by computing the Γ-limit of the sequence of three-dimensional energies. 1 Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France 2 Laboratoire de Modélisation et Calcul, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France The membrane shell model in nonlinear elasticity 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Infinite Hierarchy of Elastic Shell Models: Some Recent Results and a Conjecture

We summarize some recent results of the authors and their collaborators, regarding the derivation of thin elastic shell models (for shells with mid-surface of arbitrary geometry) from the variational theory of 3d nonlinear elasticity. We also formulate a conjecture on the form and validity of infinitely many limiting 2d models, each corresponding to its proper scaling range of the body forces i...

متن کامل

Shape Aware Matching of Implicit Surfaces based on Thin Shell Energies

A shape sensitive, variational approach for the matching of surfaces considered as thin elastic shells is investigated. The elasticity functional to be minimized takes into account two different types of nonlinear energies: a membrane energy measuring the rate of tangential distortion when deforming the reference shell into the template shell, and a bending energy measuring the bending under th...

متن کامل

Nonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique

In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...

متن کامل

Strong convergence results for the asymptotic behavior of the 3D-shell model

We revisit the asymptotic convergence properties – with respect to the thickness parameter – of the earlier-proposed 3D-shell model. This shell model is very attractive for engineering applications, in particular due to the possibility of directly using a general 3D constitutive law in the corresponding finite element formulations. We establish strong convergence results for the 3D-shell model ...

متن کامل

Nonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory

Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000